Homoclinic based on orthogonal collocation
We compute Ntst time slices of a periodic orbit using orthogonal collocation. This is implemented in the structure BifurcationKit.PeriodicOrbitOCollProblem.
The current implementation is not yet optimised for large scale problems. This will be improved in the future.
The general method is explained in BifurcationKit.jl.
General method
Please see [DeWitte] for a thorough description of the method. It amounts to solving a boundary value problem.
\[\left\{\begin{aligned} & \dot{u}(t)-2 T\cdot F(u(t), p)=0 \\ & F\left(u_0, p\right)=0 \\ & Q^{U^{\perp}, \mathrm{T}}\left(u(0)-u_0\right)=0, \\ & Q^{S^{\perp}, \mathrm{T}}\left(u(1)-u_0\right)=0 \\ & T_{22 U} Y_U-Y_U T_{11 U}+T_{21 U}-Y_U T_{12 U} Y_U=0, \\ & T_{22 S} Y_S-Y_S T_{11 S}+T_{21 S}-Y_S T_{12 S} Y_S=0 \\ & \left\|u(0)-u_0\right\|-\epsilon_0=0 \\ & \left\|u(1)-u_0\right\|-\epsilon_1=0 \\ & \int_0^1 \tilde{u}^*(t)[u(t)-\tilde{u}(t)] d t=0, \\ \end{aligned}\right.\]
Mesh adaptation
The goal of this functionality is to adapt the mesh in order to minimise the error.
Jacobian
The jacobian is computed with automatic differentiation e.g. ForwardDiff.jl
References
- DeWitte
De Witte, Virginie, Willy Govaerts, Yuri A. Kuznetsov, and Mark Friedman. “Interactive Initialization and Continuation of Homoclinic and Heteroclinic Orbits in MATLAB.” ACM Transactions on Mathematical Software 38, no. 3 (April 2012): 1–34. https://doi.org/10.1145/2168773.2168776.