Library
Parameters
Problems
HclinicBifurcationKit.HomoclinicHyperbolicProblemPBC
— TypeComputation of homoclinic orbit to an hyperbolic saddle based on the projection boundary condition (PBC) method.
bvp::Any
: Sructure encoding the boundary value problem. For example, you can pass aPeriodicOrbitTrapProblem
, aPeriodicOrbitOCollProblem
or anAbstractShootingProblem
lens::Any
: Two lenses which are used to define 2 free parameters.T::Any
: Return time Tϵ0::Any
: Precision of how far the section is from the homoclinic pointϵ1::Any
: Precision of how far the section is from the homoclinic pointfreelens::Any
: Free parametersQu0::Any
: Orthonormal Projector on the unstable subspace orthogonalQs0::Any
: Orthonormal Projector on the stable subspace orthogonalN::Int64
: Dimension of phase spaceupdateEveryStep::Int64
: updates the section everyupdate_section_every_step
step during continuationjacobian::Symbol
: How the jacobian of the problem is computedtest::Any
testOrbitFlip::Bool
testInclinationFlip::Bool
nUnstable::Int64
nStable::Int64
Continuation
Missing docstring for BifurcationKit.continuation(𝐇𝐨𝐦::HclinicBifurcationKit.HomoclinicHyperbolicProblemPBC,homguess,lens::Lens,alg::BifurcationKit.AbstractContinuationAlgorithm,_contParams::ContinuationPar;kwargs...)
. Check Documenter's build log for details.
BifurcationKit.continuation
— Methodcontinuation(
prob_vf,
bt,
bvp,
alg,
_contParams;
ϵ0,
amplitude,
freeparams,
maxT,
update_every_step,
test_orbit_flip,
test_inclination_flip,
kwargs...
)
Perform automatic branch switching to homoclinic curve from a Bogdanov-Takens bifurcation point. It uses the homoclinic orbit predictor from the Bogdanov-Takens normal form.
Arguments
prob::BifurcationProblem
contains the vector fieldbt::BK.BogdanovTakens
a Bogdanov-takens point. For example, you can get this from a call tobt = get_normal_form(br, ind_bt)
bvp::BK.AbstractBoundaryValueProblem
, for examplePeriodicOrbitOCollProblem(50, 4)
alg
continuation algorithm_contParams::ContinuationPar
Optional arguments
ϵ0 = 1e-5
distance of the homolinic orbit from the saddle pointamplitude = 1e-3
amplitude of the homoclinic orbitmaxT = Inf
limit on the "period" of the homoclinic cycle.
You can also pass the same arguments to the constructor of ::HomoclinicHyperbolicProblemPBC
and those to continuation
from BifurcationKit.
kwargs
arguments passed tocontinuation
Utils
HclinicBifurcationKit.generate_hom_problem
— Functiongenerate_hom_problem(
coll,
x,
pars,
lensHom;
verbose,
ϵ0,
ϵ1,
t0,
t1,
maxT,
freeparams,
kw...
)
Generate a homoclinic to hyperbolic saddle problem from a periodic solution obtained with problem pb
.
Arguments
coll
aPeriodicOrbitOCollProblem
which provide basic information, like the number of time slicesM
x::AbstractArray
initial guesspars
parameterslensHom::Lens
parameter axis for continuationϵ0, ϵ1
: specify the distance to the saddle point of x₀, x₁t0, t1
: specify the time corresponding to x₀, x₁. Overwrite the part withϵ0, ϵ1
if set.
Optional arguments
You can pass the same arguments to the constructor of ::HomoclinicHyperbolicProblemPBC
.
Output
- returns a
HomoclinicHyperbolicProblemPBC
and an initial guess.
generate_hom_problem(
sh,
x,
pars,
lensHom;
verbose,
time,
ϵ0,
ϵ1,
t0,
t1,
maxT,
freeparams,
kw...
)
Generate a homoclinic to hyperbolic saddle problem from a periodic solution obtained with problem pb
.
Arguments
sh
aShootingProblem
which provide basic information, like the number of time slicesM
x::AbstractArray
initial guesspars
parameterslensHom::BK.AllOpticTypes
parameter axis for continuationϵ0, ϵ1
: specify the distance to the saddle point of x₀, x₁t0, t1
: specify the time corresponding to x₀, x₁. Overwrite the part withϵ0, ϵ1
if set.
Optional arguments
You can pass the same arguments to the constructor of ::HomoclinicHyperbolicProblemPBC
.
Output
- returns a
HomoclinicHyperbolicProblemPBC
and an initial guess.
Missing docstring for get_homoclinic_orbit
. Check Documenter's build log for details.