Library
Parameters
Problems
HclinicBifurcationKit.HomoclinicHyperbolicProblemPBC — TypeComputation of homoclinic orbit to an hyperbolic saddle based on the projection boundary condition (PBC) method.
bvp::Any: Sructure encoding the boundary value problem. For example, you can pass aPeriodicOrbitTrapProblem, aPeriodicOrbitOCollProblemor anAbstractShootingProblemlens::Any: Two lenses which are used to define 2 free parameters.T::Any: Return time Tϵ0::Any: Precision of how far the section is from the homoclinic pointϵ1::Any: Precision of how far the section is from the homoclinic pointfreelens::Any: Free parametersQu0::Any: Orthonormal Projector on the unstable subspace orthogonalQs0::Any: Orthonormal Projector on the stable subspace orthogonalN::Int64: Dimension of phase spaceupdateEveryStep::Int64: updates the section everyupdate_section_every_stepstep during continuationjacobian::Symbol: How the jacobian of the problem is computedtest::AnytestOrbitFlip::BooltestInclinationFlip::BoolnUnstable::Int64nStable::Int64
Continuation
Missing docstring for BifurcationKit.continuation(𝐇𝐨𝐦::HclinicBifurcationKit.HomoclinicHyperbolicProblemPBC,homguess,lens::Lens,alg::BifurcationKit.AbstractContinuationAlgorithm,_contParams::ContinuationPar;kwargs...). Check Documenter's build log for details.
BifurcationKit.continuation — Methodcontinuation(
prob_vf,
bt,
bvp,
alg,
_contParams;
ϵ0,
amplitude,
freeparams,
maxT,
update_every_step,
test_orbit_flip,
test_inclination_flip,
kwargs...
)
Perform automatic branch switching to homoclinic curve from a Bogdanov-Takens bifurcation point. It uses the homoclinic orbit predictor from the Bogdanov-Takens normal form.
Arguments
prob::BifurcationProblemcontains the vector fieldbt::BK.BogdanovTakensa Bogdanov-takens point. For example, you can get this from a call tobt = get_normal_form(br, ind_bt)bvp::BK.AbstractBoundaryValueProblem, for examplePeriodicOrbitOCollProblem(50, 4)algcontinuation algorithm_contParams::ContinuationPar
Optional arguments
ϵ0 = 1e-5distance of the homolinic orbit from the saddle pointamplitude = 1e-3amplitude of the homoclinic orbitmaxT = Inflimit on the "period" of the homoclinic cycle.
You can also pass the same arguments to the constructor of ::HomoclinicHyperbolicProblemPBC and those to continuation from BifurcationKit.
kwargsarguments passed tocontinuation
Utils
HclinicBifurcationKit.generate_hom_problem — Functiongenerate_hom_problem(
coll::PeriodicOrbitOCollProblem,
x::AbstractArray,
pars,
lensHom::Union{typeof(identity), IndexLens, PropertyLens, ComposedFunction};
verbose,
ϵ0,
ϵ1,
t0,
t1,
maxT,
freeparams,
kw...
) -> Tuple{Any, RecursiveArrayTools.ArrayPartition, Any, RecursiveArrayTools.ArrayPartition}
Generate a homoclinic to hyperbolic saddle problem from a periodic solution obtained with problem pb.
In case of an adapted mesh, you can pass the POSolutionAndState directly in place of x.
Arguments
collaPeriodicOrbitOCollProblemwhich provide basic information, like the number of time slicesMx::AbstractArrayinitial guessparsparameterslensHom::Lensparameter axis for continuationϵ0, ϵ1: specify the distance to the saddle point of x₀, x₁t0, t1: specify the time corresponding to x₀, x₁. Overwrite the part withϵ0, ϵ1if set.
Optional arguments
You can pass the same arguments to the constructor of ::HomoclinicHyperbolicProblemPBC.
Output
- returns a
HomoclinicHyperbolicProblemPBCand an initial guess.
generate_hom_problem(
sh::ShootingProblem,
x::AbstractArray,
pars,
lensHom::Union{typeof(identity), IndexLens, PropertyLens, ComposedFunction};
verbose,
time,
ϵ0,
ϵ1,
t0,
t1,
maxT,
freeparams,
kw...
) -> Tuple{Any, RecursiveArrayTools.ArrayPartition, Any, RecursiveArrayTools.ArrayPartition}
Generate a homoclinic to hyperbolic saddle problem from a periodic solution obtained with problem pb.
Arguments
shaShootingProblemwhich provide basic information, like the number of time slicesMx::AbstractArrayinitial guessparsparameterslensHom::BK.AllOpticTypesparameter axis for continuationϵ0, ϵ1: specify the distance to the saddle point of x₀, x₁t0, t1: specify the time corresponding to x₀, x₁. Overwrite the part withϵ0, ϵ1if set.
Optional arguments
You can pass the same arguments to the constructor of ::HomoclinicHyperbolicProblemPBC.
Output
- returns a
HomoclinicHyperbolicProblemPBCand an initial guess.
Missing docstring for get_homoclinic_orbit. Check Documenter's build log for details.