🟤 Modulated fronts in 1d autocatalytic model (Manual)
We consider the model [Balmforth][Malham] which is also treated in [Beyn]
\[\begin{array}{l} u_{t}=a u_{x x}-u f(v), \quad a>0, u, v: \mathbb{R} \rightarrow \mathbb{R} \\ v_{t}=v_{x x}+u f(v) \end{array}\]
where $f(u) = u^m 1_{u\geq 0}$. We chose the boundary conditions
\[\left(u_{-}, v_{-}\right)=(0,1),\quad \left(u_{+}, v_{+}\right)=(1,0)\tag{BC}.\]
It is straightforward to implement this problem as follows:
using Revise
using ForwardDiff, SparseArrays
using BifurcationKit, LinearAlgebra, Plots
const BK = BifurcationKit
# supremum norm
f(u) = u^9 # solutions are positive, so remove the heaviside
# helper function to plot solutions
function plotsol!(x; k...)
u = @view x[1:end÷2]
v = @view x[end÷2:end]
plot!(u; label="u", k...)
plot!(v; label="v", k...)
end
plotsol(x; k...) = (plot();plotsol!(x; k...))
# encode the nonlinearity
@views function NL!(dest, U, p, t = 0.)
N = p.N
u = U[1:N]
v = U[N+1:2N]
dest[1:N] .= -u .* f.(v)
dest[N+1:2N] .= -dest[1:N]#u .* f.(v)
return dest
end
# function for the differential with specific boundary conditions
# for fronts
@views function applyD_add!(f, U, p, a)
uL = 0; uR = 1; vL = 1; vR = 0
n = p.N
u = U[1:n]
v = U[n+1:2n]
c1 = 1 / (2p.h)
f[1] += a * (uL - u[2] ) * c1
f[end] += a * (v[n-1] - vR ) * c1
f[n] += a * (u[n-1] - uR ) * c1
f[n+1] += a * ( vL - v[2] ) * c1
@inbounds for i=2:n-1
f[i] += a * (u[i-1] - u[i+1]) * c1
f[n+i] += a * (v[i-1] - v[i+1]) * c1
end
return f
end
# function which encodes the full PDE
@views function Fcat!(f, U, p, t = 0)
uL = 0; uR = 1; vL = 1; vR = 0
n = p.N
# nonlinearity
NL!(f, U, p)
# Dirichlet boundary conditions
h2 = p.h * p.h
c1 = 1 / h2
u = U[1:n]
v = U[n+1:2n]
f[1] += p.a * (uL - 2u[1] + u[2] ) * c1
f[end] += (v[n-1] - 2v[n] + vR ) * c1
f[n] += p.a * (u[n-1] - 2u[n] + uR ) * c1
f[n+1] += (vL - 2v[1] + v[2] ) * c1
@inbounds for i=2:n-1
f[i] += p.a * (u[i-1] - 2u[i] + u[i+1]) * c1
f[n+i] += (v[i-1] - 2v[i] + v[i+1]) * c1
end
return f
end
Jcat(x,p) = sparse(ForwardDiff.jacobian(x -> Fcat!(similar(x), x, p), x))
We chose the following parameters:
N = 200
lx = 25.
X = LinRange(-lx,lx, N)
par_cat = (N = N, a = 0.18, h = 2lx/N)
u0 = @. (tanh(2X)+1)/2
U0 = vcat(u0, 1 .- u0)
# we define a problem to hold the vector field
prob = BifurcationProblem(Fcat!, u0, par_cat, (@optic _.a); J = Jcat)
Freezing method
The problem may feature fronts, solutions of the form $u(x,t) = \tilde u(x-st)$ (same for $v$) for a fixed value of the profile $\tilde u$ and the speed $s$. The equation for the front profile is, up to an abuse of notations (we removed the tildes)
\[\begin{array}{l} 0=a u_{\xi\xi}+s\cdot u_{\xi}-u f(v)\\ 0=v_{\xi\xi}+s\cdot v_{\xi}+u f(v) \end{array}\]
with unknowns $u,v,s$. The front is solution of these equations but it is not uniquely determined because of the phase invariance. Hence, we add the phase condition (see [Beyn])
\[0 = \left\langle (u,v), \partial_\xi (u_0,v_0) \right\rangle\]
where $U_0:=(u_0,v_0)$ is some fixed profile. This is easily coded in the following functional
@views function FcatWave!(out, x, p)
N = p.N
U = x[1:end-1]
Fcat!(out[1:2N], U, p)
applyD_add!(out[1:2N], U, p, x[end])
# phase condition
out[2N+1] = dot(U, p.Du0)
return out
end
FcatWave(x, p, t = 0) = FcatWave!(similar(x), x, p)
JcatWave(u, p) = sparse(ForwardDiff.jacobian(z -> FcatWave!(similar(z),z,p), u))
We now define the $U_0$ profile
uold = vcat(u0, (1 .- u0))
Duold = zero(uold); applyD_add!(Duold, uold, par_cat,1)
# update problem parameters for front problem
par_cat_wave = (par_cat..., u0Du0 = dot(uold, Duold), Du0 = Duold, uold = uold)
Let us find the front using newton
# we define a problem for solving for the wave
probtw = BifurcationProblem(FcatWave!, vcat(U0, -1.), par_cat_wave, (@optic _.a);
J = JcatWave,
record_from_solution = (x,p;k...) -> (s = x[end], nrm = norm(x[1:end-1])),
plot_solution = (x, p; k...) -> plotsol!(x[1:end-1];k...))
front = BK.solve(probtw, Newton(), NewtonPar())
println("front speed s = ", front.u[end], ", norm = ", front.u[1:end-1] |> norminf)
front speed s = -0.2627125504927461, norm = 1.0000000000000002
plotsol(front.u[1:end-1], title="front solution")
Continuation of front solutions
Following [Malham], the modulated fronts are solutions of the following DAE
\[\begin{array}{l}\tag{DAE} u_{t}=a u_{x x}+s\cdot u_x-u f(v)\\ v_{t}=v_{x x}+s\cdot v_x+u f(v)\\ 0 = \left\langle U, \partial_\xi U_0 \right\rangle \end{array}\]
which can be written with a PDE $M_aU_t = G(u)$ with mass matrix $M_a = (Id, Id, 0)$. We have already written the vector field of (MF) in the function FcatWave
.
Having found a front $U^f$, we can continue it as function of the parameter $a$ and detect instabilities. The stability of the front is linked to the eigenelements $(\lambda, V)$ solution of the generalized eigenvalue problem:
\[\lambda M_a\cdot V = dG(U^f)\cdot V.\]
However BifurcationKit
does not provide a generalized eigenvalue solver for now, so we devise one:
# we need a specific eigensolver
struct EigenWave <: BK.AbstractEigenSolver end
# implementation of the solver for the generalized Eigen problem
function (eig::EigenWave)(Jac, nev; k...)
N = size(Jac,1)
B = diagm(vcat(ones(N-1),0))
F = eigen(Array(Jac), B)
I = sortperm(F.values, by = real, rev = true)
nev2 = min(nev, length(I))
J = findall( abs.(F.values[I]) .< 100000)
return Complex.(F.values[I[J[1:nev2]]]), Complex.(F.vectors[:, I[J[1:nev2]]]), true, 1
end
optn = NewtonPar(tol = 1e-8, eigsolver = EigenWave())
opt_cont_br = ContinuationPar(p_min = 0.05, p_max = 1., newton_options = optn, ds= -0.001, plot_every_step = 2, detect_bifurcation = 3, nev = 10, n_inversion = 6)
br = continuation(probtw, PALC(), opt_cont_br)
plot(br)
We have detected a Hopf instability in front dynamics, this will give rise of modulated fronts. Let us try to compute them.
Branch of modulated fronts
To branch from the Hopf bifurcation point, we just have to pass the mass matrix as follows:
# we compute the periodic solutions using Mt time steps and a Trapezoidal time stepper
# note that we pass the parameter massmatrix which
# allows to solver the DAE
Mt = 30
probTP = PeriodicOrbitTrapProblem(M = Mt ;
massmatrix = spdiagm(0 => vcat(ones(2N),0.)),
update_section_every_step = 1,
# linear solver for the periodic orbit problem
# OPTIONAL, one could use the default
jacobian = :BorderedLU)
opts_po_cont = ContinuationPar(dsmin = 0.0001, dsmax = 0.01, ds= -0.001, p_min = 0.05, max_steps = 130, newton_options = optn, nev = 7, tol_stability = 1e-3, detect_bifurcation = 0, plot_every_step = 1)
opts_po_cont = @set opts_po_cont.newton_options.max_iterations = 10
opts_po_cont = @set opts_po_cont.newton_options.tol = 1e-6
br_po = continuation(
# we want to compute the bifurcated branch from
# the first Hopf point
br, 1,
# arguments for continuation
opts_po_cont,
# this is how we pass the method to compute the periodic
probTP ;
# OPTIONAL parameters
# we want to jump on the new branch at phopf + δp
δp = -0.0025,
# tangent predictor
alg = PALC(tangent = Secant(),
# linear solver specific to PALC
bls = BorderingBLS(solver = DefaultLS(), check_precision = false)),
# regular parameters for the continuation
# a few parameters saved during run
record_from_solution = (u, p; k...) -> begin
outt = BK.get_periodic_orbit(p.prob, u, (@set par_cat_wave.a=p))
m = maximum(outt.u[end,:])
return (s = m, period = u[end])
end,
# plotting of a section
plot_solution = (x, p; k...) -> begin
outt = BK.get_periodic_orbit(p.prob, x, (@set par_cat_wave.a=p.p))
plot!(outt.t, outt.u[end, :]; label = "", subplot=3)
plot!(br, subplot=1)
end,
# print the Floquet exponent
finalise_solution = (z, tau, step, contResult; k...) -> begin
true
end,
plot = true,
normC = norminf)
plot(br);plot!(br_po, label = "modulated fronts")
Let us plot one modulated front:
modfront = get_periodic_orbit(br_po, length(br_po))
plot(plot(modfront.t, modfront.u[end,:], xlabel = "t", ylabel = "s", label = ""),
contour(modfront.t, X, modfront.u[1:N,:], color = :viridis, xlabel = "t", title = "u for a = $(round(br_po.sol[length(br_po)].p,digits=4))", fill = true, ylims=(-10,10)))
References
- Balmforth
N. J. Balmforth, R. V. Craster, and S. J. A. Malham. Unsteady fronts in an autocatalytic system. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 455(1984):1401–1433, 1999.
- Malham
S. J. A. Malham and M. Oliver. Accelerating fronts in autocatalysis. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 456(1999):1609–1624, 2000.
- Beyn
Beyn, Wolf-Jürgen, and Vera Thümmler. “Phase Conditions, Symmetries and PDE Continuation.” In Numerical Continuation Methods for Dynamical Systems: Path Following and Boundary Value Problems Springer Netherlands, 2007. https://doi.org/10.1007/978-1-4020-6356-5_10.