Bifurcation Analysis in Julia logo
Bifurcation Analysis in Julia
  • Home
  • Overview of capabilities
  • Getting Started with BifurcationKit
  • Tutorials
    • Guidelines
    • Educational introduction
    • Overview
    • Plot functions
    • Bifurcation Problem
    • DiffEq wrapper
      • Work in progress
      • Introduction
      • Trapezoid
      • Collocation
      • Shooting
      • Introduction
      • Eigen Solvers
    • Introduction
    • Predictors / correctors
    • PALC
    • Moore-Penrose continuation
    • AutoSwitch
    • ANM
    • Deflated continuation
      • Krylov-Newton algorithm
      • Deflated problems
      • Bifurcation detection (1 param)
      • Fold / Hopf Continuation (2 params)
      • Bogdanov-Takens refinement (3 params)
      • Bifurcation detection (1 param)
      • Fold continuation (2 params)
      • Period-Doubling continuation (2 params)
      • Neimark-Sacker continuation (2 params)
      • Simple branch point
      • Non-simple branch point
      • Simple Hopf
      • Cusp
      • Bogdanov-Takens
      • Bautin
      • Zero-Hopf
      • Hopf-Hopf
      • Simple branch point
      • Period-doubling
      • Neimark-Sacker
      • Introduction
      • From equilibria to equilibria
      • From Hopf/PD/Branch to periodic orbits
      • From codim 2 to equilibria
      • From codim 2 to periodic orbits
    • Automatic Bifurcation diagram
    • Event handling and Callback
    • Iterator Interface
    • Linear solvers
    • Bordered linear solvers
    • Eigen solvers
    • Bordered arrays
      • Vector
      • Linear / eigen Solvers
      • Predictor / corrector
      • Flow
  • Frequently asked questions
  • Debugging
  • Migration from old versions
  • Library
Version
  • Problems
  • DiffEq wrapper
  • DiffEq wrapper
GitHub

Wrapper to the package DifferentialEquations.jl

Warning

This is work in progress.

Several packages in the SciML organization provide wrappers to BifurcationKit. On can mention

  1. ModelingToolkit and the tutorials
  2. Catalyst and the tutorials

Work in progress

Use the LinearSolve.jl for handling the linear problems and also NonlinearSolve.jl whenever possible. The use of LinearSolve.jl allows to re-use Krylov spaces in between continuation steps.

« Bifurcation ProblemIntroduction »

Powered by Documenter.jl and the Julia Programming Language.

Settings


This document was generated with Documenter.jl version 1.10.2 on Sunday 4 May 2025. Using Julia version 1.10.9.