🟢 2d Ginzburg-Landau equation (Shooting)
In this tutorial, we re-visit the example 2d Ginzburg-Landau equation (finite differences, codim 2, Hopf aBS) using a Standard Simple Shooting method. In the tutorial 1d Brusselator (advanced user), we used the implicit solver Rodas4P
for the shooting. We will use the exponential-RK scheme ETDRK2
ODE solver to compute the solution of cGL equations. This method is convenient for solving semilinear problems of the form
\[\dot x = Ax+g(x)\]
where $A$ is the infinitesimal generator of a $C_0$-semigroup. We use the same beginning as in 2d Ginzburg-Landau equation (finite differences, codim 2, Hopf aBS):
using Revise, DifferentialEquations
using BifurcationKit, LinearAlgebra, Plots, SparseArrays
const BK = BifurcationKit
function Laplacian2D(Nx, Ny, lx, ly)
hx = 2lx/Nx
hy = 2ly/Ny
D2x = spdiagm(0 => -2ones(Nx), 1 => ones(Nx-1), -1 => ones(Nx-1) ) / hx^2
D2y = spdiagm(0 => -2ones(Ny), 1 => ones(Ny-1), -1 => ones(Ny-1) ) / hy^2
D2x[1,1] = -2/hx^2
D2x[end,end] = -2/hx^2
D2y[1,1] = -2/hy^2
D2y[end,end] = -2/hy^2
D2xsp = sparse(D2x)
D2ysp = sparse(D2y)
A = kron(sparse(I, Ny, Ny), D2xsp) + kron(D2ysp, sparse(I, Nx, Nx))
return A, D2x
end
We then encode the PDE:
function NL!(f, u, p, t = 0.)
(;r, μ, ν, c3, c5) = p
n = div(length(u), 2)
u1 = @view u[1:n]
u2 = @view u[n+1:2n]
ua = u1.^2 .+ u2.^2
f1 = @view f[1:n]
f2 = @view f[n+1:2n]
@. f1 .= r * u1 - ν * u2 - ua * (c3 * u1 - μ * u2) - c5 * ua^2 * u1
@. f2 .= r * u2 + ν * u1 - ua * (c3 * u2 + μ * u1) - c5 * ua^2 * u2
return f
end
function Fcgl!(f, u, p, t = 0.)
mul!(f, p.Δ, u)
f .= f .+ NL(u, p)
end
NL(u, p) = NL!(similar(u), u, p)
Fcgl(u, p, t = 0.) = Fcgl!(similar(u), u, p, t)
function Jcgl(u, p, t = 0.)
(;r, μ, ν, c3, c5, Δ) = p
n = div(length(u), 2)
u1 = @view u[1:n]
u2 = @view u[n+1:2n]
ua = u1.^2 .+ u2.^2
f1u = zero(u1)
f2u = zero(u1)
f1v = zero(u1)
f2v = zero(u1)
@. f1u = r - 2 * u1 * (c3 * u1 - μ * u2) - c3 * ua - 4 * c5 * ua * u1^2 - c5 * ua^2
@. f1v = -ν - 2 * u2 * (c3 * u1 - μ * u2) + μ * ua - 4 * c5 * ua * u1 * u2
@. f2u = ν - 2 * u1 * (c3 * u2 + μ * u1) - μ * ua - 4 * c5 * ua * u1 * u2
@. f2v = r - 2 * u2 * (c3 * u2 + μ * u1) - c3 * ua - 4 * c5 * ua * u2 ^2 - c5 * ua^2
jacdiag = vcat(f1u, f2v)
Δ + spdiagm(0 => jacdiag, n => f1v, -n => f2u)
end
with parameters
Nx = 41
Ny = 21
n = Nx*Ny
lx = pi
ly = pi/2
Δ = Laplacian2D(Nx, Ny, lx, ly)[1]
par_cgl = (r = 0.5, μ = 0.1, ν = 1.0, c3 = -1.0, c5 = 1.0, Δ = blockdiag(Δ, Δ))
sol0 = 0.1rand(2Nx, Ny)
sol0_f = vec(sol0)
prob = BK.BifurcationProblem(Fcgl, sol0_f, par_cgl, (@optic _.r); J = Jcgl)
and the ODE problem
f1 = DiffEqArrayOperator(par_cgl.Δ)
f2 = NL!
prob_sp = SplitODEProblem(f1, f2, sol0_f, (0.0, 120.0), (@set par_cgl.r = 1.2), dt = 0.1)
# we solve the PDE!!!
sol = @time DifferentialEquations.solve(prob_sp, ETDRK2(krylov=true); abstol=1e-14, reltol=1e-14)
Automatic branch switching from the Hopf points
We show how to use automatic branch switching from the Hopf points computed in the previous section. To compute the periodic orbits, we use a Standard Shooting method.
We first recompute the Hopf points as in the previous tutorial:
eigls = EigArpack(1.0, :LM)
opt_newton = NewtonPar(tol = 1e-9, verbose = true, eigsolver = eigls, max_iterations = 20)
opts_br = ContinuationPar(dsmax = 0.02, ds = 0.01, p_max = 2., nev = 15, newton_options = (@set opt_newton.verbose = false))
br = @time continuation(prob, PALC(), opts_br, verbosity = 0)
We then compute the differentials of the vector field, this is needed by the branch switching method because it first computes the Hopf normal form. Thankfully, this is little work using Automatic Differentiation.
We define the linear solvers to be use by the (Matrix-Free) shooting method
ls = GMRESIterativeSolvers(reltol = 1e-4, maxiter = 50, verbose = false)
eig = EigKrylovKit(tol = 1e-7, x₀ = rand(2Nx*Ny), verbose = 2, dim = 40)
optn = NewtonPar(verbose = true, tol = 1e-9, max_iterations = 25, linsolver = ls, eigsolver = eig)
opts_po_cont = ContinuationPar(dsmin = 0.001, dsmax = 0.02, ds= 0.01, p_max = 2.5, max_steps = 32, newton_options = optn, nev = 7, tol_stability = 1e-3, plot_every_step = 1)
as
Mt = 1 # number of time sections
br_po = continuation(
# we want to compute the bifurcated branch from
# the first Hopf point
br, 1,
# arguments for continuation
opts_po_cont,
# this is how to pass the method to compute the periodic
# orbits. We shall use 1 section and the ODE solver ETDRK2
ShootingProblem(Mt, prob_sp, ETDRK2(krylov = true); abstol = 1e-10, reltol = 1e-8, jacobian = BK.FiniteDifferencesMF()) ;
# linear solver for bordered linear system
# we combine the 2 solves. It is here faster than BorderingBLS()
linear_algo = MatrixFreeBLS(@set ls.N = Mt*2n+2),
# regular parameters for the continuation
verbosity = 3, plot = true,
# a few parameters saved during run
record_from_solution = (u, p; k...) -> (amp = BK.getamplitude(p.prob, u, (@set par_cgl.r = p.p)), period = u[end]),
# plotting of a section
plot_solution = (x, p; k...) -> heatmap!(reshape(x[1:Nx*Ny], Nx, Ny); color=:viridis, k...),
# print the Floquet exponent
finalise_solution = (z, tau, step, contResult; k...) ->
(Base.display(contResult.eig[end].eigenvals) ;true),
normC = norminf)
Manual branch switching from the Hopf points
The goal of this section is to show how to use the package in case automatic branch switching fails. This can happen for tedious PDEs and "one has to get his hands dirty".
We decide to use Standard Shooting and thus define a Shooting functional
probSh = ShootingProblem(
# we pass the ODEProblem encoding the flow and the time stepper
remake(prob_sp, p = (@set par_cgl.r = 1.2)), ETDRK2(krylov = true),
# this is the phase condition
[sol[:, end]];
# parameter axis
lens = (@optic _.r),
# jacobian of the periodic orbit functional
jacobian = BK.FiniteDifferencesMF(),
# these are options passed to the ODE time stepper
abstol = 1e-14, reltol = 1e-14)
We use the solution from the ODE solver as a starting guess for the shooting method.
# initial guess with period 6.9 using solution at time t = 116
initpo = vcat(sol(116.), 6.9) |> vec
# linear solver for shooting functional
ls = GMRESIterativeSolvers(reltol = 1e-4, N = 2Nx * Ny + 1, maxiter = 50, verbose = false)
# newton parameters
optn = NewtonPar(verbose = true, tol = 1e-9, max_iterations = 20, linsolver = ls)
# continuation parameters
eig = EigKrylovKit(tol=1e-7, x₀ = rand(2Nx*Ny), verbose = 2, dim = 40)
opts_po_cont = ContinuationPar(dsmin = 0.001,
dsmax = 0.01,
ds = -0.01,
p_max = 1.5,
max_steps = 60,
newton_options = (@set optn.eigsolver = eig),
nev = 5,
tol_stability = 1e-3,
detect_bifurcation = 0)
br_po = @time continuation(probSh,
initpo, PALC(), opts_po_cont;
verbosity = 3, plot = true,
linear_algo = MatrixFreeBLS(@set ls.N = probSh.M*2n+2),
plot_solution = (x, p; kwargs...) -> heatmap!(reshape(x[1:Nx*Ny], Nx, Ny); color=:viridis, kwargs...),
record_from_solution = (u, p; k...) -> BK.getamplitude(probSh, u, (@set par_cgl.r = p.p); ratio = 2), normC = norminf)