๐ŸŸก Temperature model with ApproxFun, no AbstractArray

We reconsider the example Temperature model by relying on the package ApproxFun.jl which allows very precise function approximation. This is an interesting example because we have to change the scalar product of PALC for the method to work well.

This is one example where the state space, the space of solutions to the nonlinear equation, is not a subtype of AbstractArray. See Requested methods for Custom State for more informations.

Code for custom state

We start with some imports:

using ApproxFun, LinearAlgebra

using BifurcationKit, Plots
const BK = BifurcationKit

We then need to add some methods not available in ApproxFun because the state space is not a subtype of AbstractArray:

# specific methods for ApproxFun
import Base: eltype, similar, copyto!, length
import LinearAlgebra: mul!, rmul!, axpy!, axpby!, dot, norm

similar(x::ApproxFun.Fun, T) = (copy(x))
similar(x::ApproxFun.Fun) = copy(x)
mul!(w::ApproxFun.Fun, v::ApproxFun.Fun, ฮฑ) = (w .= ฮฑ * v)

eltype(x::ApproxFun.Fun) = eltype(x.coefficients)
length(x::ApproxFun.Fun) = length(x.coefficients)

dot(x::ApproxFun.Fun, y::ApproxFun.Fun) = sum(x * y)

axpy!(a, x::ApproxFun.Fun, y::ApproxFun.Fun) = (y .= a * x + y)
axpby!(a::Float64, x::ApproxFun.Fun, b::Float64, y::ApproxFun.Fun) = (y .= a * x + b * y)
rmul!(y::ApproxFun.Fun, b::Float64) = (y.coefficients .*= b; y)
rmul!(y::ApproxFun.Fun, b::Bool) = b == true ? y : (y.coefficients .*= 0; y)

copyto!(x::ApproxFun.Fun, y::ApproxFun.Fun) = ( (x.coefficients = copy(y.coefficients);x))

Problem formulation

We can easily write our functional with boundary conditions in a convenient manner using ApproxFun:

N(x; a = 0.5, b = 0.01) = 1 + (x + a*x^2)/(1 + b*x^2)
dN(x; a = 0.5, b = 0.01) = (1-b*x^2+2*a*x)/(1+b*x^2)^2

function F_chan(u, p)
	(;ฮฑ, ฮฒ, ฮ”) = p
	return [Fun(u(0.), domain(u)) - ฮฒ,
		Fun(u(1.), domain(u)) - ฮฒ,
		ฮ” * u + ฮฑ * N(u, b = ฮฒ)]
end

function Jac_chan(u, p)
	(;ฮฑ, ฮฒ, ฮ”) = p
	return [Evaluation(u.space, 0.),
		Evaluation(u.space, 1.),
		ฮ” + ฮฑ * dN(u, b = ฮฒ)]
end

We want to call a Newton solver. We first need an initial guess and the Laplacian operator:

sol = Fun(x -> x * (1-x), Interval(0.0, 1.0))
ฮ” = Derivative(sol.space, 2)
# set of parameters
par_af = (ฮฑ = 3., ฮฒ = 0.01, ฮ” = ฮ”)

prob = BifurcationProblem(F_chan, sol, par_af, (@optic _.ฮฑ); J = Jac_chan, plot_solution = (x, p; kwargs...) -> plot!(x; label = "l = $(length(x))", kwargs...))

Finally, we need to provide some parameters for the Newton iterations. This is done by calling

optnewton = NewtonPar(tol = 1e-12, verbose = true)

We call the Newton solver:

out = @time BK.solve(prob, Newton(), optnewton, normN = x -> norm(x, Inf64))

and you should see

โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚ Newton step         residual     linear iterations  โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚       0     โ”‚       1.5707e+00     โ”‚        0       โ”‚
โ”‚       1     โ”‚       1.1546e-01     โ”‚        1       โ”‚
โ”‚       2     โ”‚       8.0149e-04     โ”‚        1       โ”‚
โ”‚       3     โ”‚       3.9038e-08     โ”‚        1       โ”‚
โ”‚       4     โ”‚       7.9049e-13     โ”‚        1       โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€-โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
  0.103869 seconds (362.15 k allocations: 14.606 MiB)

Continuation

We can also perform numerical continuation with respect to the parameter $\alpha$. Again, we need to provide some parameters for the continuation:

optcont = ContinuationPar(dsmin = 0.0001, dsmax = 0.05, ds= 0.005, p_max = 4.1, plot_every_step = 10, newton_options = NewtonPar(tol = 1e-8, max_iterations = 20, verbose = true), detect_bifurcation = 0, max_steps = 200)

Then, we can call the continuation routine.

# we need a specific bordered linear solver
# we use the BorderingBLS one to rely on ApproxFun.\
br = continuation(prob, PALC(bls = BorderingBLS(solver = optnewton.linsolver, check_precision = false)), optcont,
	plot = true,
	plot_solution = (x, p; kwargs...) -> plot!(x; label = "l = $(length(x))", kwargs...),
	verbosity = 2,
	normC = x -> norm(x, Inf64))

and you should see

However, if we do that, we'll see that it does not converge very well. The reason is that the default arc-length constraint (see Pseudo arclength continuation) is

\[N(x, p)=\frac{\theta}{\text { length}(x)}\left\langle x-x_{0}, d x_{0}\right\rangle+(1-\theta) \cdot\left(p-p_{0}\right) \cdot d p_{0}-d s=0\]

is tailored for vectors of fixed length. The $\frac{1}{length(x)}$ is added to properly balance the terms in the constraint. Thus, in BifurcationKit, the dot product is in fact (x,y) -> dot(x,y) / length(y).

But here, the vector space is provided with a custom dot product (see above) which depends on the domain, here Interval(0.0, 1.0). Hence, we want to change this constraint $N$ for the following:

\[N(x, p)={\theta}\left\langle x-x_{0}, d x_{0}\right\rangle+(1-\theta) \cdot\left(p-p_{0}\right) \cdot d p_{0}-d s=0.\]

This can be done as follows:

optcont = ContinuationPar(dsmin = 0.001, dsmax = 0.05, ds= 0.01, p_max = 4.1, plot_every_step = 10, newton_options = NewtonPar(tol = 1e-8, maxIter = 20, verbose = true), max_steps = 300, ฮธ = 0.2, detect_bifurcation = 0)

br = continuation(prob, PALC(bls=BorderingBLS(solver = optnewton.linsolver, check_precision = false)), optcont,
	plot = true,
	# specify the dot product used in PALC
	dotPALC = BK.DotTheta(dot),
	# we need a specific bordered linear solver
	# we use the BorderingBLS one to rely on ApproxFun.\
	linear_algo = BorderingBLS(solver = DefaultLS(), check_precision = false),
	plot_solution = (x, p; kwargs...) -> plot!(x; label = "l = $(length(x))", kwargs...),
	verbosity = 2,
	normC = x -> norm(x, Inf64))