🟡 Period doubling in Lur'e problem (PD aBS)
The following model is an adaptive control system of Lur’e type. It is an example from the MatCont library.
\[\left\{\begin{array}{l} \dot{x}=y \\ \dot{y}=z \\ \dot{z}=-\alpha z-\beta y-x+x^{2} \end{array}\right.\]
The model is interesting because there is a period doubling bifurcation and we want to show the branch switching capabilities of BifurcationKit.jl
in this case. We provide 3 different ways to compute this periodic orbits and highlight their pro / cons.
It is easy to encode the ODE as follows
using Revise, Plots
using BifurcationKit
const BK = BifurcationKit
recordFromSolution(x, p; k...) = (u1 = x[1], u2 = x[2])
function lur!(dz, u, p, t = 0)
(;α, β) = p
x, y, z = u
dz[1] = y
dz[2] = z
dz[3] = -α * z - β * y - x + x^2
dz
end
# parameters
par_lur = (α = -1.0, β = 1.)
# initial guess
z0 = zeros(3)
# bifurcation problem
prob = BifurcationProblem(lur!, z0, par_lur, (@optic _.α);
record_from_solution = recordFromSolution)
We first compute the branch of equilibria
# continuation options
opts_br = ContinuationPar(p_min = -1.4, p_max = 1.8, dsmax = 0.01, max_steps = 1000)
# computation of the branch
br = continuation(prob, PALC(), opts_br)
scene = plot(br)
With detailed information:
br
┌─ Curve type: EquilibriumCont
├─ Number of points: 200
├─ Type of vectors: Vector{Float64}
├─ Parameter α starts at -1.0, ends at 1.8
├─ Algo: PALC
└─ Special points:
- # 1, hopf at α ≈ +1.00022831 ∈ (+0.99934442, +1.00022831), |δp|=9e-04, [converged], δ = (-2, -2), step = 142
- # 2, endpoint at α ≈ +1.80000000, step = 199
We note the Hopf bifurcation point which we shall investigate now.
Periodic orbits with orthogonal collocation
We compute the branch of periodic orbits from the Hopf bifurcation point. We rely on a the state of the art method for computing periodic orbits of ODE: orthogonal collocation.
We first define a plotting function and a record function which are used for all cases below:
# plotting function
function plotPO(x, p; k...)
xtt = get_periodic_orbit(p.prob, x, p.p)
plot!(xtt.t, xtt[1,:]; markersize = 2, k...)
plot!(xtt.t, xtt[2,:]; k...)
plot!(xtt.t, xtt[3,:]; legend = false, k...)
end
# record function
function recordPO(x, p; k...)
xtt = get_periodic_orbit(p.prob, x, p.p)
period = getperiod(p.prob, x, p.p)
return (max = maximum(xtt[1,:]), min = minimum(xtt[1,:]), period = period)
end
recordPO (generic function with 1 method)
Continuation of periodic orbits from the Hopf point:
# continuation parameters
opts_po_cont = ContinuationPar(opts_br, dsmax = 0.03, ds = 0.01, dsmin = 1e-4, max_steps = 70, tol_stability = 1e-4, plot_every_step = 20)
br_po = continuation(
br, 1, opts_po_cont,
PeriodicOrbitOCollProblem(40, 4);
plot = true,
record_from_solution = recordPO,
plot_solution = (x, p; k...) -> begin
plotPO(x, p; k...)
## plot previous branch
plot!(br, subplot = 1, putbifptlegend = false)
end,
normC = norminf)
scene = plot(br, br_po)
We provide Automatic Branch Switching from the PD point and computing the bifurcated branch is as simple as:
# aBS from PD
br_po_pd = continuation(deepcopy(br_po), 1, ContinuationPar(br_po.contparams, max_steps = 100, dsmax = 0.02, plot_every_step = 10, ds = 0.005);
prm = true, detailed = true,
plot_solution = (x, p; k...) -> begin
plotPO(x, p; k...)
## add previous branch
plot!(br_po; subplot = 1)
end,
record_from_solution = recordPO,
normC = norminf,
)
scene = plot(br_po, br_po_pd, title = "Collocation based")
Periodic orbits with Parallel Standard Shooting
We use a different method to compute periodic orbits: we rely on a fixed point of the flow. To compute the flow, we use DifferentialEquations.jl
. This way of computing periodic orbits should be more precise than the previous one. We use a particular instance called multiple shooting which is computed in parallel. This is an additional advantage compared to the previous method. Finally, please note the close similarity to the code of the previous part. As before, we first rely on Hopf aBS.
using DifferentialEquations
# ODE problem for using DifferentialEquations
prob_ode = ODEProblem(lur!, copy(z0), (0., 1.), par_lur; abstol = 1e-11, reltol = 1e-9)
# continuation parameters
# we decrease a bit the newton tolerance to help automatic branch switching from PD point
opts_po_cont = ContinuationPar(dsmax = 0.03, ds= -0.001, newton_options = NewtonPar(tol = 1e-9), tol_stability = 1e-5, n_inversion = 8, nev = 3)
br_po = continuation(
br, 1, opts_po_cont,
# parallel shooting functional with 5 sections
ShootingProblem(15, prob_ode, Rodas5(); parallel = true);
# plot = true,
record_from_solution = recordPO,
plot_solution = plotPO,
# limit the residual, useful to help DifferentialEquations
callback_newton = BK.cbMaxNorm(10),
normC = norminf)
plot(br_po)
We provide Automatic Branch Switching from the PD point and computing the bifurcated branch is as simple as:
# aBS from PD
br_po_pd = continuation(deepcopy(br_po), 1,
ContinuationPar(br_po.contparams, max_steps = 20, ds = -0.008);
plot = true, verbosity = 2,
δp = -0.005, ampfactor = 0.1,
plot_solution = (x, p; k...) -> begin
plotPO(x, p; k...)
## add previous branch
plot!(br_po; subplot = 1)
end,
record_from_solution = recordPO,
normC = norminf,
callback_newton = BK.cbMaxNorm(10),
)
scene = plot(br, br_po, br_po_pd, title = "Shooting based")
Branch of periodic orbits with finite differences
We use finite differences to discretize the problem for finding periodic orbits. We appeal to automatic branch switching from the Hopf point as follows
# continuation parameters
opts_po_cont = ContinuationPar(dsmax = 0.02, dsmin = 1e-4, p_max = 1.1, max_steps = 80, tol_stability = 1e-4)
Mt = 120 # number of time sections
br_po = continuation(
br, 1, opts_po_cont,
PeriodicOrbitTrapProblem(M = Mt);
record_from_solution = recordPO,
plot_solution = (x, p; k...) -> begin
plotPO(x, p; k...)
## plot previous branch
plot!(br, subplot=1, putbifptlegend = false)
end,
normC = norminf)
scene = plot(br, br_po)
Two period doubling bifurcations were detected. We shall now compute the branch of periodic orbits from these PD points. We do not provide Automatic Branch Switching as we do not have the PD normal form computed for PeriodicOrbitTrapProblem
. Hence, it takes some trial and error to find the ampfactor
of the PD branch.
# aBS from PD
br_po_pd = continuation(deepcopy(br_po), 1, ContinuationPar(br_po.contparams, max_steps = 70);
# plot = true,
ampfactor = .2, δp = -0.005,
plot_solution = (x, p; k...) -> begin
plotPO(x, p; k...)
## add previous branch
plot!(br_po; legend=false, subplot=1)
end,
record_from_solution = recordPO,
normC = norminf
)
Scene = title!("")
plot(br, br_po, br_po_pd, title = "Trapezoid based")