๐ŸŸข Temperature model

This is a classical example from the Trilinos library.

This is a simple example in which we aim at solving $\Delta T+\alpha N(T,\beta)=0$ with boundary conditions $T(0) = T(1)=\beta$. This example is coded in examples/chan.jl. We start with some imports:

using BifurcationKit, Plots
const BK = BifurcationKit

N(x; a = 0.5, b = 0.01) = 1 + (x + a*x^2)/(1 + b*x^2)

We then write our functional:

function F_chan(x, p)
	(;ฮฑ, ฮฒ) = p
	f = similar(x)
	n = length(x)
	f[1] = x[1] - ฮฒ
	f[n] = x[n] - ฮฒ
	for i=2:n-1
		f[i] = (x[i-1] - 2 * x[i] + x[i+1]) * (n-1)^2 + ฮฑ * N(x[i], b = ฮฒ)
	end
	return f
end

We want to call a Newton solver. We first need an initial guess:

n = 101
sol0 = [(i-1)*(n-i)/n^2+0.1 for i=1:n]

# set of parameters
par = (ฮฑ = 3.3, ฮฒ = 0.01)

Finally, we need to provide some parameters for the Newton iterations. This is done by calling

optnewton = NewtonPar(tol = 1e-9, max_iterations = 10)

We call the Newton solver:

prob = BifurcationProblem(F_chan, sol0, par, (@optic _.ฮฑ),
	# function to plot the solution
	plot_solution = (x, p; k...) -> plot!(x; ylabel="solution", label="", k...))
# we set verbose to true to see the newton iterations
sol = @time BK.solve(prob, Newton(), @set optnewton.verbose = true)

โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚ Newton step         residual      linear iterations โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚       0     โ”‚       2.3440e+01     โ”‚        0       โ”‚
โ”‚       1     โ”‚       1.3774e+00     โ”‚        1       โ”‚
โ”‚       2     โ”‚       1.6267e-02     โ”‚        1       โ”‚
โ”‚       3     โ”‚       2.4336e-06     โ”‚        1       โ”‚
โ”‚       4     โ”‚       6.7452e-12     โ”‚        1       โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
  0.001050 seconds (384 allocations: 2.299 MiB)

Note that, in this case, we did not give the Jacobian. It was computed internally using Automatic Differentiation.

We can perform numerical continuation w.r.t. the parameter $\alpha$. This time, we need to provide additional parameters, but now for the continuation method:

optcont = ContinuationPar(max_steps = 150,
	p_min = 0., p_max = 4.2,
	newton_options =optnewton)

Next, we call the continuation routine as follows.

br = continuation(prob, PALC(), optcont; plot = true)
nothing #hide

The parameter axis lens = @optic _.ฮฑ is used to extract the component of par corresponding to ฮฑ. Internally, it is used as get(par, lens) which returns 3.3.

Tip

We don't need to call newton first in order to use continuation.

You should see

scene = title!("") #hide
Example block output

The left figure is the norm of the solution as function of the parameter $p=\alpha$, the y-axis can be changed by passing a different record_from_solution to BifurcationProblem. The top right figure is the value of $\alpha$ as function of the iteration number. The bottom right is the solution for the current value of the parameter. This last plot can be modified by changing the argument plot_solution to BifurcationProblem.

Bif. point detection

Two Fold points were detected. This can be seen by looking at show(br) or br.specialpoint, by the black dots on the continuation plots when doing plot(br, plotfold=true) or by typing br in the REPL. Note that the bifurcation points are located in br.specialpoint.

What if we want to compute to continue both ways in one call?

br = continuation(prob, PALC(), optcont; bothside = true)
plot(br)
Example block output