๐ Steinmetz-Larter model
This example is found in the MatCont ecosystem.
The Steinmetz-Larter model is studied in the MatCont ecosystem because it is a simple example where a Chenciner bifurcation occurs.
\[\tag{E}\left\{\begin{array}{l} \dot{A}=-k_1 A B X-k_3 A B Y+k_7-k_{-7} A, \\ \dot{B}=-k_1 A B X-k_3 A B Y+k_8, \\ \dot{X}=k_1 A B X-2 k_2 X^2+2 k_3 A B Y-k_4 X+k_6, \\ \dot{Y}=-k_3 A B Y+2 k_2 X^2-k_5 Y, \end{array}\right.\]
This tutorial is also useful in that we show how to start periodic orbits continuation from solutions obtained from solving ODEs. Being a relatively advanced tutorial, we do not give too many details.
We start by coding the bifurcation problem.
using Revise
using Plots
using BifurcationKit
const BK = BifurcationKit
function SL!(du, u, p, t = 0)
(;k1, k2, k3, k4, k5, k6, k7, kโโ, k8) = p
A,B,X,Y = u
du[1] = -k1*A*B*X - k3*A*B*Y + k7 - kโโ*A
du[2] = -k1*A*B*X - k3*A*B*Y + k8
du[3] = k1*A*B*X - 2*k2*X^2 + 2*k3*A*B*Y - k4*X+k6
du[4] = -k3*A*B*Y + 2*k2*X^2 - k5*Y
du
end
z0 = rand(4)
par_sl = (k1=0.1631021, k2=1250., k3=0.046875, k4=20., k5=1.104, k6=0.001, kโโ=0.1175, k7=1.5, k8=0.75)
prob = BifurcationProblem(SL!, z0, par_sl, (@optic _.k8);)
# record variables for plotting
function recordFromSolution(x, p; k...)
xtt = BK.get_periodic_orbit(p.prob, x, p.p)
return (max = maximum(xtt[1,:]),
min = minimum(xtt[1,:]),
period = getperiod(p.prob, x, p.p))
end
# plotting function
function plotSolution(x, p; k...)
xtt = BK.get_periodic_orbit(p.prob, x, p.p)
plot!(xtt.t, xtt.u[1:4,:]'; label = "", k...)
end
# group parameters
argspo = (record_from_solution = recordFromSolution,
plot_solution = plotSolution,
normC = norminf)
We obtain some trajectories as seeds for computing periodic orbits.
using DifferentialEquations
alg_ode = Rodas4()
prob_de = ODEProblem(SL!, z0, (0,136.), par_sl)
sol_ode = DifferentialEquations.solve(prob_de, alg_ode)
prob_de = ODEProblem(SL!, sol_ode.u[end], (0,30.), sol_ode.prob.p, reltol = 1e-11, abstol = 1e-13)
sol_ode = DifferentialEquations.solve(prob_de, alg_ode)
plot(sol_ode)
Computation with Shooting
We generate a shooting problem from the computed trajectories and continue the periodic orbits as function of $k_8$
probsh, cish = generate_ci_problem( ShootingProblem(M=4), prob, prob_de, sol_ode, 16.; reltol = 1e-10, abstol = 1e-12, parallel = true)
opts_po_cont = ContinuationPar(p_min = 0., p_max = 20.0, ds = 0.002, dsmax = 0.05, n_inversion = 8, detect_bifurcation = 3, max_bisection_steps = 25, nev = 4, max_steps = 60, tol_stability = 1e-3)
@reset opts_po_cont.newton_options.max_iterations = 10
br_sh = continuation(deepcopy(probsh), cish, PALC(tangent = Bordered()), opts_po_cont;
# verbosity = 3, plot = true,
callback_newton = BK.cbMaxNorm(10),
argspo...)
scene = plot(br_sh)
Curve of Fold points of periodic orbits
opts_posh_fold = ContinuationPar(br_sh.contparams, detect_bifurcation = 2, max_steps = 35, p_max = 1.9, plot_every_step = 10, dsmax = 4e-2, ds = 1e-2)
@reset opts_posh_fold.newton_options.tol = 1e-12
# @reset opts_posh_fold.newton_options.verbose = true
fold_po_sh = @time continuation(deepcopy(br_sh), 2, (@optic _.k7), opts_posh_fold;
# verbosity = 2, plot = true,
detect_codim2_bifurcation = 0,
update_minaug_every_step = 1,
start_with_eigen = true,
usehessian = false,
jacobian_ma = :minaug,
normC = norminf,
callback_newton = BK.cbMaxNorm(1e1),
# bdlinsolver = BorderingBLS(solver = DefaultLS(), check_precision = false),
)
plot(fold_po_sh)
Curve of NS points of periodic orbits
opts_posh_ns = ContinuationPar(br_sh.contparams, detect_bifurcation = 0, max_steps = 35, p_max = 1.9, plot_every_step = 10, dsmax = 4e-2, ds = 1e-2)
@reset opts_posh_ns.newton_options.tol = 1e-12
# @reset opts_posh_ns.newton_options.verbose = true
ns_po_sh = continuation(deepcopy(br_sh), 1, (@optic _.k7), opts_posh_ns;
verbosity = 2,
# plot = true,
detect_codim2_bifurcation = 2,
update_minaug_every_step = 1,
start_with_eigen = false,
jacobian_ma = :minaug,
normC = norminf,
callback_newton = BK.cbMaxNorm(1e1),
)
scene = plot(ns_po_sh)
plot!(scene, fold_po_sh)
scene
Computation with collocation
probcoll, cicoll = generate_ci_problem( PeriodicOrbitOCollProblem(50, 4; update_section_every_step = 0), prob, sol_ode, 16.)
opts_po_cont = ContinuationPar(p_min = 0., p_max = 2.0,
ds = 0.002, dsmax = 0.05,
n_inversion = 6,
nev = 4,
max_steps = 50,
tol_stability = 1e-5)
br_coll = @time continuation(deepcopy(probcoll), cicoll, PALC(), opts_po_cont;
# verbosity = 3, plot = true,
callback_newton = BK.cbMaxNorm(10),
argspo...)
scene = plot(br_coll)
Curve of Fold points of periodic orbits
opts_pocl_fold = ContinuationPar(br_coll.contparams, detect_bifurcation = 1, plot_every_step = 10, dsmax = 4e-2, max_steps = 100, ds = 0.01)
@reset opts_pocl_fold.newton_options.verbose = true
@reset opts_pocl_fold.newton_options.tol = 1e-11
fold_po_cl = @time continuation(deepcopy(br_coll), 2, (@optic _.k7), opts_pocl_fold;
verbosity = 3,
# plot = true,
detect_codim2_bifurcation = 2,
update_minaug_every_step = 1,
start_with_eigen = false,
usehessian = false,
jacobian_ma = :minaug,
normC = norminf,
callback_newton = BK.cbMaxNorm(1e1),
)
plot(fold_po_cl)
Curve of NS points of periodic orbits
opts_pocl_ns = ContinuationPar(br_coll.contparams, detect_bifurcation = 1, plot_every_step = 10, dsmax = 4e-2)
ns_po_cl = continuation(deepcopy(br_coll), 1, (@optic _.k7), opts_pocl_ns;
verbosity = 1, plot = false,
detect_codim2_bifurcation = 2,
update_minaug_every_step = 1,
start_with_eigen = false,
jacobian_ma = :minaug,
normC = norminf,
callback_newton = BK.cbMaxNorm(1e1),
)
โโ Curve type: NSPeriodicOrbitCont
โโ Number of points: 44
โโ Type of vectors: BorderedArray{Vector{Float64}, Vector{Float64}}
โโ Parameters (:k8, :k7)
โโ Parameter k7 starts at 1.5, ends at 1.8575486316219252
โโ Algo: PALC
โโ Special points:
- # 1, ch at k7 โ +1.85532365 โ (+1.85532332, +1.85532365), |ฮดp|=3e-07, [ guess], ฮด = ( 0, 0), step = 40
- # 2, R1 at k7 โ +1.85754863 โ (+1.85751992, +1.85754863), |ฮดp|=3e-05, [ guess], ฮด = ( 0, 0), step = 43
- # 3, endpoint at k7 โ +1.85754863, step = 43
scene = plot(ns_po_cl)
scene = plot(ns_po_cl, fold_po_cl)