๐ŸŸ  Brusselator 1d with periodic BC using FourierFlows.jl

Acknowledgment

The example was done in collaboration with Navid C. Constantinou.

We look at the Brusselator in 1d, see [Tzou]. The equations are

\[\begin{aligned} \frac { \partial u } { \partial t } & = D \frac { \partial ^ { 2 } u } { \partial z ^ { 2 } } + u ^ { 2 } v - ( B + 1 ) u + E \\ \frac { \partial v } { \partial t } & = \frac { \partial ^ { 2 } v} { \partial z ^ { 2 } } + B u - u ^ { 2 } v \end{aligned}\tag{E}\]

with periodic boundary conditions. These equations have been introduced to reproduce an oscillating chemical reaction.

We focus on computing a snaking branch of periodic orbits using spectral methods implemented in Brusselator.jl:

using Revise, BifurcationKit
using Brusselator, Plots, ForwardDiff, LinearAlgebra, Setfield, DiffEqBase
using FFTW: irfft
const BK = BifurcationKit

dev = CPU()					# Device (CPU/GPU)

nx      = 512				# grid resolution
stepper = "FilteredRK4"		# timestepper
dt  	= 0.01		# timestep
nsteps  = 9000		# total number of time-steps
nsubs	= 20		# number of time-steps for intermediate logging/plotting (nsteps must be multiple of nsubs)

# parameters for the model used by Tzou et al. (2013)
E = 1.4
L = 137.37				 # Domain length
ฮต = 0.1
ฮผ = 25
ฯ = 0.178

D_c = ((sqrt(1 + E^2) - 1) / E)^2
B_H = (1 + E * sqrt(D_c))^2

B = B_H + ฮต^2 * ฮผ
D = D_c + ฮต^2 * ฯ

kc = sqrt(E / sqrt(D))

# building the model
grid = OneDGrid(dev, nx, L)
params = Brusselator.Params(B, D, E)
vars = Brusselator.Vars(dev, grid)
equation = Brusselator.Equation(dev, params, grid)
prob = FourierFlows.Problem(equation, stepper, dt, grid, vars, params, dev)

get_u(prob) = irfft(prob.sol[:, 1], prob.grid.nx)
get_v(prob) = irfft(prob.sol[:, 2], prob.grid.nx)
u_solution = Diagnostic(get_u, prob; nsteps=nsteps+1)
diags = [u_solution]

We now integrate the model to find a periodic orbit:

l = 28
ฮธ = @. (grid.x > -l/2) & (grid.x < l/2)

au, av = -(E^2 + kc^2) / B, -1
cu, cv = -E * (E + im) / B, 1

# initial condition
u0 = @.	  E + ฮต * real( au * exp(im * kc * grid.x) * ฮธ + cu * (1 - ฮธ) )
v0 = @. B/E + ฮต * real( av * exp(im * kc * grid.x) * ฮธ + cv * (1 - ฮธ) )
set_uv!(prob, u0, v0)

plot_output(prob)

# move forward in time to capture the periodic orbit
for j=0:Int(nsteps/nsubs)
	updatevars!(prob)
	stepforward!(prob, diags, nsubs)
end

# estimate of the periodic orbit, will be used as initial condition for a Krylov-Newton
initpo = copy(vcat(vcat(prob.vars.u, prob.vars.v), 4.9))

using RecursiveArrayTools

t = u_solution.t[1:10:nsteps]
U_xt = reduce(hcat, [ u_solution.data[j] for j=1:10:nsteps ])
heatmap(grid.x, t, U_xt', c = :viridis, clims = (1, 3))

which gives

Building the Shooting problem

We compute the periodic solution of (E) with a shooting algorithm. We thus define a function to compute the flow and its differential.

# update the states
function _update!(out, pb::FourierFlows.Problem, N)
	out[1:N] .= pb.vars.u
	out[N+1:end] .= pb.vars.v
	out
end

# update the parameters in pb
function _setD!(D, pb::FourierFlows.Problem)
	pb.eqn.L[:, 1] .*= D / prob.params.D
	pb.params.D = D
end

# compute the flow from x up to time t
function ฯ•(x, p, t)
	(;pb, D, N) = p
	_setD!(D, pb)

	# set initial condition
	@views set_uv!(pb, x[1:N], x[N+1:2N])
	pb.clock.t=0.; pb.clock.step=0
	# determine number of time steps
	dt = pb.clock.dt
	nsteps = div(t, dt) |> Int
	# compute flow
	stepforward!(pb, nsteps)

	rest = t - nsteps * dt
	dt = pb.clock.dt
	pb.clock.dt = rest
	stepforward!(pb, 1)
	pb.clock.dt = dt
	updatevars!(pb)
	out = similar(x)
	_update!(out, pb, N)
	return (t=t, u=out)
end

# differential of the flow by FD
function dฯ•(x, p, dx, t; ฮด = 1e-8)
	phi = ฯ•(x, p, t).u
	dphi = (ฯ•(x .+ ฮด .* dx, p, t).u .- phi) ./ ฮด
	return (t=t, u=phi, du=dphi)
end

We also need the vector field

function vf(x, p)
	(;pb, D, N) = p
	# set parameter in prob
	pb.eqn.L[:, 1] .*= D / pb.params.D
	pb.params.D = D
	u = @view x[1:N]
	v = @view x[N+1:end]
	# set initial condition
	set_uv!(pb, u, v)
	rhs = Brusselator.get_righthandside(pb)
	# rhs is in Fourier space, put back to real space
	out = similar(x)
	ldiv!((@view out[1:N]), pb.grid.rfftplan, rhs[:, 1])
	ldiv!((@view out[N+1:end]), pb.grid.rfftplan, rhs[:, 2])
	return out
end

We then specify the shooting problem

# parameters to be passed to ฯ•
par_bru = (pb = prob, N = nx, nsubs = nsubs, D = D)

# example of vector passed to ฯ•
x0 = vcat(u0,v0)

# here we define the problem which encodes the standard shooting
flow = Flow(vf, ฯ•, dฯ•)

# the first section is centered around a stationary state
_center = vcat(E*ones(nx), B/E*ones(nx))

# section for the flow
sectionBru = BK.SectionSS(vf(initpo[1:end-1], par_bru), _center)
probSh = ShootingProblem(M = 1, flow = flow, ds = diff(LinRange(0, 1, 1 + 1)), section = sectionBru, par = par_bru, lens = (@optic _.D), jacobian = :FiniteDifferences)

Finding a periodic orbit

# linear solver for the Shooting problem
ls = GMRESIterativeSolvers(N = 2nx+1, reltol = 1e-4)

# parameters for Krylov-Newton
optn = NewtonPar(tol = 1e-9, verbose = true,
	# linear solver
	linsolver = ls,
	# eigen solver
	eigsolver = EigKrylovKit(dim = 30, xโ‚€ = rand(2nx), verbose = 1  )
	)

# Newton-Krylov method to check convergence and tune parameters
solp = @time newton(probSh, initpo, optn,
	normN = x->norm(x,Inf))

and you should see (the guess was not that good)

โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚ Newton step         residual     linear iterations  โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚       0     โ”‚       1.6216e+03     โ”‚        0       โ”‚
โ”‚       1     โ”‚       4.4376e+01     โ”‚        6       โ”‚
โ”‚       2     โ”‚       9.0109e-01     โ”‚       15       โ”‚
โ”‚       3     โ”‚       4.9044e-02     โ”‚       32       โ”‚
โ”‚       4     โ”‚       4.1139e-03     โ”‚       27       โ”‚
โ”‚       5     โ”‚       6.0704e-03     โ”‚       33       โ”‚
โ”‚       6     โ”‚       2.4721e-04     โ”‚       33       โ”‚
โ”‚       7     โ”‚       3.7889e-05     โ”‚       34       โ”‚
โ”‚       8     โ”‚       6.6836e-07     โ”‚       31       โ”‚
โ”‚       9     โ”‚       2.0295e-09     โ”‚       39       โ”‚
โ”‚      10     โ”‚       2.1685e-12     โ”‚       41       โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
 83.615047 seconds (284.31 M allocations: 24.250 GiB, 6.28% gc time)

Computation of the snaking branch

# you can detect bifurcations with the option detect_bifurcation = 3
optc = ContinuationPar(newton_options = optn, ds = -1e-3, dsmin = 1e-7, dsmax = 2e-3, p_max = 0.295, plot_every_step = 2, max_steps = 1000, detect_bifurcation = 0)
bd = continuation(probSh,
	solp, PALC(bls = MatrixFreeBLS(@set ls.N = 2nx+2)), optc;
	plot = true,
	verbosity = 3,
	plot_solution = (x,p ; kw...) -> plot!(x[1:nx];kw...),
	normC = x->norm(x,Inf))

which leads to

References

  • Tzou

    Tzou, J. C., Y.-P. Ma, A. Bayliss, B. J. Matkowsky, and V. A. Volpert. Homoclinic Snaking near a Codimension-Two Turing-Hopf Bifurcation Point in the Brusselator Model.โ€ Physical Review E 87, no. 2 (February 14, 2013): 022908. https://doi.org/10.1103/PhysRevE.87.022908.